
23rd CardioVascular Summit-TCTAP 2018

Imaging & Physiology

April 28, 2018 12:40 PM ~ 12:48 PM Room 104, Level 1

OCT vs. IVUS for Guiding PCI: OPINION Trial and Updated Meta-analysis

Takashi Kubo MD, PhD

Wakayama Medical University, Wakayama, Japan

Disclosure statement of financial interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

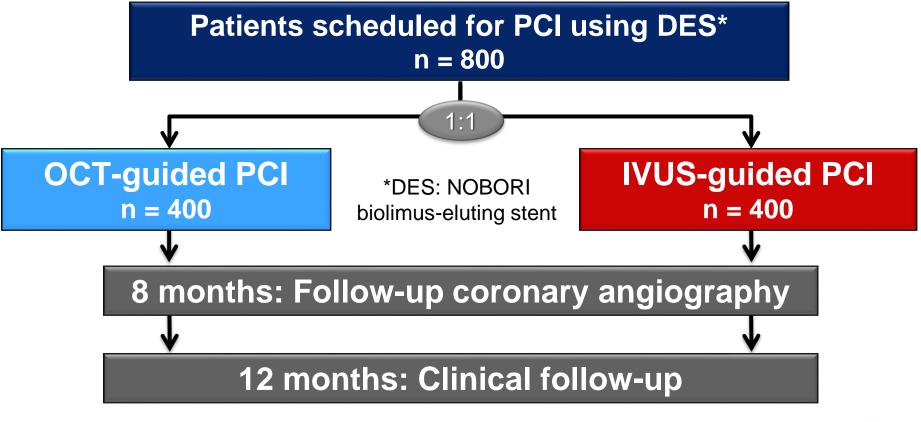
- Grant/Research Support
- Consulting Fees/Honoraria
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

Company

- No
- Abbot vascular, Terumo
- No
- No
- No
- No
- No

IVUS/OCT in ESC guideline 2014

Recommendations	Class	Level
IVUS in selected patients to optimize stent implantation.	lla	В
OCT in selected patients to optimize stent implantation.	llb	С

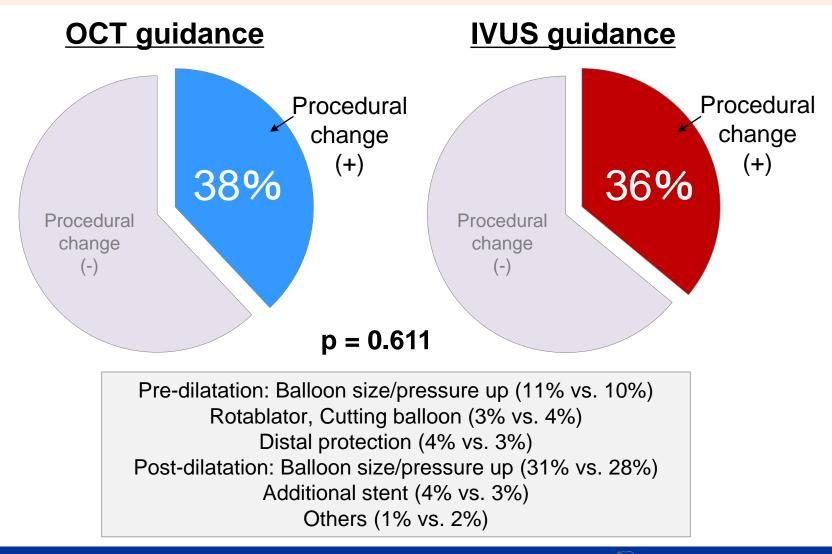

OCT is becoming increasingly widespread as an adjunctive intravascular diagnostic technique in PCI, because of its ability to visualize coronary structures at high resolution.

Clinical and prognostic implication of OCT guidance in PCI has not been established yet.

The OPINION study design

Prospective, multi-center (n=42), randomized (1:1), non-inferiority trial comparing OCT-guided PCI with IVUS-guided PCI

Primary Endpoint: Target Vessel Failure (TVF) at 12 months after PCI

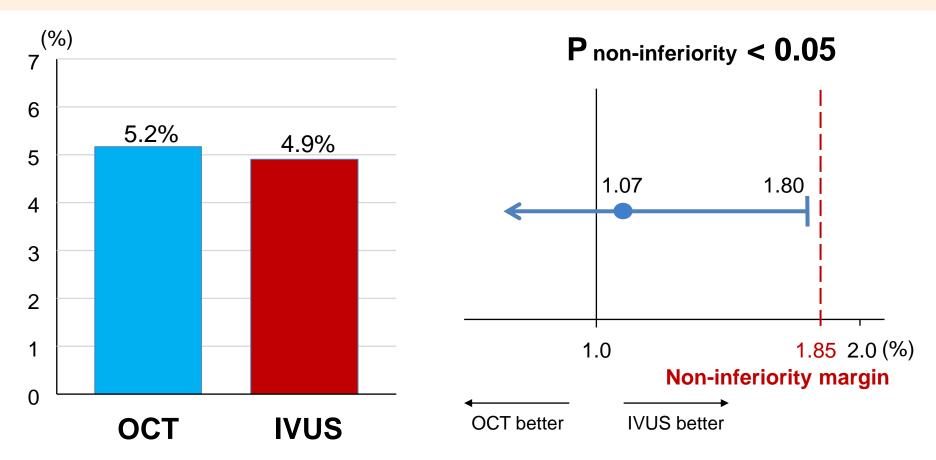


OCT / IVUS criteria for optimal stent deployment

	OCT-guided PCI	IVUS-guided PCI		
Reference site	Most normal lookingNo lipidic plaque	Largest lumenPlaque burden < 50%		
Determination of stent diameter	 By measuring lumen diameter at proximal and distal reference sites 	 By measuring vessel diameter at proximal and distal reference sites 		
Determination of stent length	By measuring distance from	By measuring distance from distal to proximal reference site		
Goal of stent deployment	 In-stent minimal lumen area ≥ 90% of the average reference lumen area Complete apposition of the stent over its entire length against the vessel wall Symmetric stent expansion defined by minimum lumen diameter / maximum lumen diameter ≥ 0.7 No plaque protrusion, thrombus, or edge dissection with potential to provoke flow disturbances 			

Procedural change by OCT / IVUS guidance

Kubo T, Akasaka T, et al. Eur Heart J. 2017;38:3139-47


Primary endpoint: TVF

TVF = composite of cardiac death, target vessel-related MI and clinically-driven TVR

Kubo T, Akasaka T, et al. Eur Heart J. 2017;38:3139-47

Primary endpoint: TVF

The upper 95% confidence interval of the difference in the TVF rate was 1.80%, which was lower than the pre-defined non-inferiority margin. Therefore, non-inferiority of OCT-guided PCI relative to IVUS-guided PCI was demonstrated in terms of TVF.

Kubo T, Akasaka T, et al. Eur Heart J. 2017;38:3139-47

Secondary endpoints

	OCT	IVUS	<i>p</i> -value
Cardiac death	0 (0%)	1 (0.2%)	0.496
MI	2 (0.5%)	3 (0.7%)	0.684
Ischemia-driven TVR			
TLR	11 (2.7%)	12 (3.0%)	0.835
Non-TLR	9 (2.2%)	5 (1.2%)	0.420
Stent thrombosis	1 (0.2%)	2 (0.5%)	0.621
Stroke	4 (1.0%)	1 (0.2%)	0.374
Contrast-induced nephropathy	0 (0%)	0 (0%)	-

QCA results

	OCT	IVUS	<i>p</i> -value
Pre-PCI			
Reference vessel diameter, mm	2.62 ± 0.53	2.59 ± 0.57	0.259
Diameter stenosis, %	64 ± 12	65 ± 13	0.156
Post-PCI			
Diameter stenosis, %	12 ± 6	11 ± 6	0.143
8-month follow-up			
Diameter stenosis, %	16 ± 11	15 ± 10	0.948
Binary restenosis (DS>50%)	6 (1.6)%	6 (1.6)%	1.000

OCT results

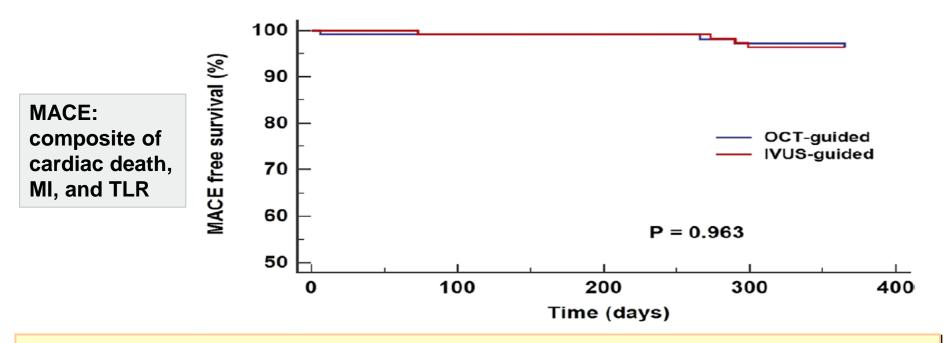
	OCT	IVUS	<i>p</i> -value
Post-PCI			
Mean stent area, mm ²	6.36 (4.95–7.68)	6.68 (5.91–8.79)	0.054
Stent edge hematoma	30 (63)	51 (82)	0.040
Irregular tissue protrusion	25 (48)	33 (73)	0.014
8-month follow-up			
Mean neointima area, mm ²	0.46 (0.36–0.76)	0.62 (0.40–1.06)	0.057
Mean lumen area, mm ²	6.33 (4.77–7.39)	6.34 (5.37–7.87)	0.240

Otake H, Kubo T, Akasaka T, et, al. JACCimag 2017;11:111-23

OCT-guided PCI vs. angiography-guided PCI

The CLI-OPCI study retrospectively enrolled 700 patient to compare clinical outcomes between angiographic guidance alone vs. angiographic plus OCT guidance for PCI.

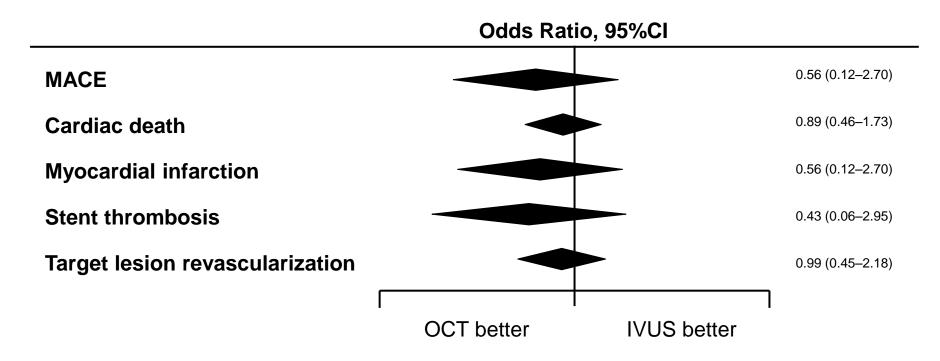
	Angiographic guidance group (n=335)	Angiographic plus OCT guidance group (n=335)	<i>p</i> -value
Events at 1-year follow-up			
Death	23 (6.9%)	11 (3.3%)	0.035
Cardiac death	15 (4.5%)	4 (1.2%)	0.010
Myocardial infarction	29 (8.7%)	18 (5.4%)	0.096
Target lesion repeat revascularisation	11 (3.3%)	11 (3.3%)	1.0
Cardiac death, myocardial infarction, or repeat revascularisation	50 (15.1%)	32 (9.6%)	0.034


Conclusion: OCT can improve clinical outcomes of patients undergoing PCI.

Prati et al. Euroint. 2012;8:823-9

OCT-guided PCI vs. IVUS-guided PCI

The study enrolled 290 patients who underwent implantation of a second generation DES under OCT (122 patients) or IVUS (168 patients) guidance. The two groups were compared after 1:1 propensity score matching (114 patients in each group).

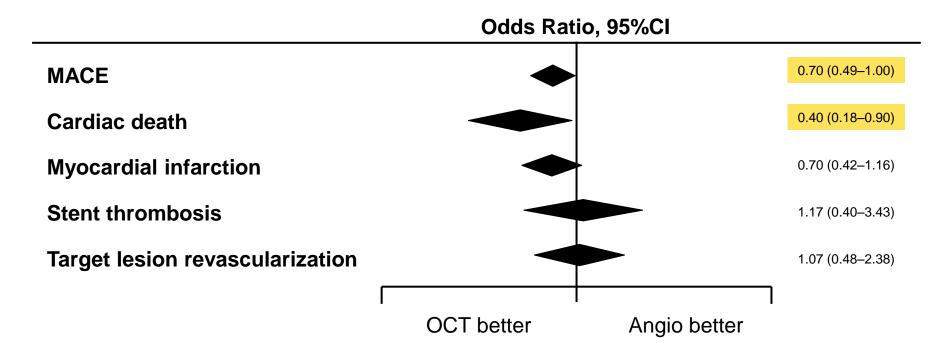


Conclusion: One year cumulative MACE free survival rate was similar between OCT-guided PCI and IVUS-guided PCI.

Kim IC et al. J Interven Cardiol 2016;9999:1–9

OCT-guided PCI vs. IVUS-guided PCI

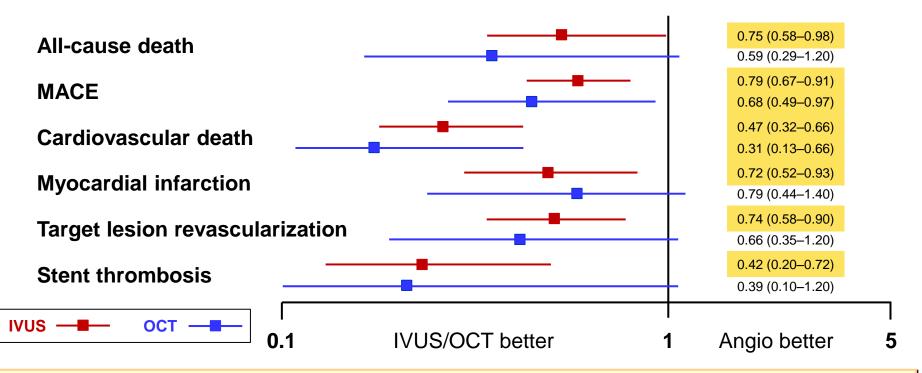
This meta-analysis included 2,781 patients; OCT-guidance vs. angiography guidance (n = 1753) and OCT-guidance vs. IVUS-guidance (n = 1028).


Conclusion: There was no statistically significant difference in clinical outcomes between OCT-guided PCI and IVUS-guided PCI.

Kuku K et al. Int J Cardiovasc Imaging 2018;34:503-513

OCT-guided PCI vs. angiography-guided PCI

This meta-analysis included 2,781 patients; OCT-guidance vs. angiography guidance (n = 1753) and OCT-guidance vs. IVUS-guidance (n = 1028).


Conclusion: The rate of MACE and cardiac death was significantly lower in OCTguided PCI compared to angiography-guided PCI.

Kuku K et al. Int J Cardiovasc Imaging 2018;34:503-513

IVUS/OCT-guided PCI vs. angio-guided PCI

This meta-analysis included 31 studies and 17,882 patients (angiography: 27 studies, 2,875 pts; IVUS: 29 studies, 8,434 pts; and OCT: 7 studies, 1,623 pts).

Conclusion: IVUS/OCT guidance in PCI reduced the risk of MACE and cardiovascular death compared to angiography guidance alone.

Buccheri S et al. Euroint. JACCint 2017;10:2488-98

Conclusion

- 1. OCT-guided PCI and IVUS-guided PCI is equivalent in terms of clinical outcome.
- 2. As compared with angiography-guided PCI, both OCTguided PCI and IVUS-guided PCI have excellent clinical outcomes, with a low rate of death, MI and repeat revascularization.

Thanks for your attention !

)

